Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.249
Filtrar
1.
Sci Rep ; 14(1): 8648, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622156

RESUMO

Geotextiles made from plant fibers creates a suitable environment for plant growth as part of soil bioengineering techniques. The faster decomposition of plant fiber geotextiles compared to synthetic ones demands the use of composites that enhance their waterproofing and extend their durability in the environment. The objective of this work was to evaluate the resistance of a geotextile made with Thypha domingensis to degradation caused by climatic variables. Tensile strength tests were conducted in the laboratory in order to evaluate the degradation of geotextiles treated with single and double layers of waterproofing resin. Based on Scanning Electron Microscopy (SEM) images, it was verified that applying double layer of waterproofing resin delays the fibers degradation up to 120 days of exposure to the effects of climatic variables other than temperature. The maximum resistance losses due to the geotextile's exposure to degradation were statistically significant for all three treatments: control-without waterproofing resin, with one layer resin, and with two layers resin. Therefore, waterproofing resin, provides a long-term protective solution for geotextiles made from cattail fibers.


Assuntos
Typhaceae , Resistência à Tração , Estruturas Vegetais
2.
J Adhes Dent ; 26(1): 103-116, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38602234

RESUMO

PURPOSE: To investigate the antibacterial effects of Terminalia catappa Linn (TCL) leaf extracts at different concentrations and the effects of these extracts used as primers on the long-term adhesive properties of two universal adhesives. MATERIALS AND METHODS: After extract preparation, the antimicrobial and antibacterial activities of TCL against Streptococcus mutans (UA 159) were assessed in microdilution assays to provide the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Additionally, to provide quantitative data on the ability of TCL extract to reduce cell viability, colony forming units (CFU) were counted. To examine adhesive properties, 288 human molars were randomly assigned to 32 experimental conditions (n = 9) according to the following variables: (1) treatment agent: negative control (untreated surface), and primers at concentrations of 1xMIC, 5xMIC, and 10xMIC; (2) adhesives: Scotchbond Universal (SBU) and Futurabond Universal (FBU); (3) adhesive strategy: etch-and-rinse (ER) or self-etch (SE); and (4) storage time: 24 h or after 2 years. Primers were applied for 60 s, upon which the teeth were incrementally restored and sectioned into adhesive-dentin bonded sticks. These were tested for microtensile bond strength (µTBS) and nanoleakage (NL) after 24-h and 2-year water storage, as well as in-situ degree of conversion (DC) at 24 h. The chemical profile of the hybrid layer was determined via micro-Raman spectroscopy. Biofilm assay data were analyzed using the Kruskal-Wallis test; the pH of culture media and the chemical profile were analyzed by one-way ANOVA. The adhesive properties (µTBS, NL, DC) were evaluated using a four-way ANOVA and Tukey's test. Significance was set at 5%. RESULTS: Similar values of MIC and MBC were observed (2 mg/ml), showing bactericidal potential. CFU analysis demonstrated that concentrations of 5xMIC and 10xMIC significantly inhibited biofilm formation (p < 0.001). The application of the TCL primer at all concentrations significantly increased the immediate µTBS and DC, and decreased the immediate NL values when compared to the control group (p < 0.05), regardless of the adhesive and adhesive strategies. Despite an increase in the NL values for all groups after 2 years (p > 0.05), in groups where the TCL primer was applied, the µTBS remained constant after 2 years for both adhesives, while a decrease in the µTBS was observed in the control groups (p < 0.05). Usually, 10xMIC showed better results than 1xMIC and 5xMIC (p < 0.05). The application of TCL promoted cross-linking; cross-linking rates increased proportionally to the concentration of TCL (p < 0.05). CONCLUSION: Primers containing TCL promoted bactericidal and bacteriostatic action, as well as cross-linking with dentin, while maintaining the adhesive properties of the adhesive-dentin interface after 2 years of water storage.


Assuntos
Colagem Dentária , Terminalia , Humanos , Cimentos Dentários/farmacologia , Cimentos Dentários/química , Adesivos Dentinários/farmacologia , Adesivos Dentinários/química , Resinas Compostas/química , Dentina , Resistência à Tração , Cimentos de Resina/farmacologia , Cimentos de Resina/química , Água/química , Antibacterianos/farmacologia , Teste de Materiais
3.
J Adhes Dent ; 26(1): 93-102, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38602286

RESUMO

PURPOSE: To investigate the influence of contamination and different cleaning methods on resin bonding to cobalt-chro- mium (CoCr) alloy disks. MATERIALS AND METHODS: A total of 160 CoCr disks were divided into 3 groups. The first group (N = 64) was air abraded with alumina particles and contaminated with a silicone disclosing agent and saliva; the second group (N = 64) was air abraded but not contaminated; the third group (N = 32) was neither air abraded nor contaminated. The first two groups were di- vided into 4 subgroups (N = 16) according to the cleaning method: ultrasonic bath in 99% isopropanol, use of a cleaning suspension of zirconium oxide particles, use of a cleaning suspension based on 10-MDP salt, and treatment with atmo- spheric plasma. The third group was divided into 2 subgroups (N = 16): treatment with atmospheric plasma and no treat- ment. All CoCr specimens were bonded to plexiglas tubes filled with a bonding resin that contained phosphate monomer. Tensile bond strength (TBS) was examined by tensile testing after 3 and 150 days of water storage plus 37,500 thermal cy- cles (N = 8). RESULTS: After contamination, TBS was significantly reduced after 150 days of water storage. Groups without air abrasion showed initially low TBS and debonded spontaneously after 150 days of water storage. CONCLUSION: None of the cleaning methods was able to remove saliva and silicone disclosing agent on CoCr-alloy sur- faces. Surface activation by plasma treatment has no long-term effect on the bond strength.


Assuntos
Resinas Compostas , Colagem Dentária , Cimentos de Resina , Ligas , Abrasão Dental por Ar , Propriedades de Superfície , Água , Resistência à Tração , Silicones , Teste de Materiais , Zircônio , Análise do Estresse Dentário
4.
Clin Oral Investig ; 28(4): 240, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570397

RESUMO

OBJECTIVES: Thermoplastic polymers show alteration in their mechanical properties after thermoforming on a dental model. The purpose of this in-vitro study was to evaluate the tensile strength of different thermoplastic polymer sheets thermoformed on a pre-treatment (moderate crowding) and post-treatment (well-aligned) maxillary model of a patient. MATERIALS AND METHODS: Forty maxillary models (Twenty Pre-treatment & twenty Post-treatment of uniform dimension) were made by duplicating them using alginate Hydrogum 5 (Zhermack). Samples were then divided into eight groups of 5 samples each. The thermoplastic sheets Imprelon® (Scheu-Dent), AVAC R® (Jaypee), Placa Crystal® (BioART), EZ-VAC® (3A Medes)-1.0 mm thick were thermoformed on these models respectively. The sample was retrieved using ceramic bur mounted on a straight hand-piece and subjected for testing using TINIUS Olsen 10ST micro universal testing machine and recorded. RESULTS: There was no statistically significant difference (P > .05) in tensile strength of thermoformed thermoplastic polymer sheets between pre-treatment and post-treatment maxillary model. Tensile strength of EZ-VAC (3A Medes) showed higher variation between pre-treatment and post-treatment maxillary model though it was found to be statistically insignificant (P > .05). Significant difference (P < .05) was seen between groups when they were compared separately among pre-treatment and post-treatment models. CONCLUSION: Placa Crystal (BioART) among the pre-treatment group, EZ - VAC (3A Medes) among the post-treatment group, showed highest tensile strength. CLINICAL RELEVANCE: Results of the study highlights the necessity to test materials in conditions which stands in accordance with the clinical scenario to a considerable extent and also emphasizes the need for further study in aligner.


Assuntos
Cerâmica , Polímeros , Humanos , Resistência à Tração , Polímeros/química , Teste de Materiais
5.
J R Soc Interface ; 21(213): 20230592, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593841

RESUMO

The mechanical characterization of the oesophagus is essential for applications such as medical device design, surgical simulations and tissue engineering, as well as for investigating the organ's pathophysiology. However, the material response of the oesophagus has not been established ex vivo in regard to the more complex aspects of its mechanical behaviour using fresh, human tissue: as of yet, in the literature, only the hyperelastic response of the intact wall has been studied. Therefore, in this study, the layer-dependent, anisotropic, visco-hyperelastic behaviour of the human oesophagus was investigated through various mechanical tests. For this, cyclic tests, with increasing stretch levels, were conducted on the layers of the human oesophagus in the longitudinal and circumferential directions and at two different strain rates. Additionally, stress-relaxation tests on the oesophageal layers were carried out in both directions. Overall, the results show discrete properties in each layer and direction, highlighting the importance of treating the oesophagus as a multi-layered composite material with direction-dependent behaviour. Previously, the authors conducted layer-dependent cyclic experimentation on formalin-embalmed human oesophagi. A comparison between the fresh and embalmed tissue response was carried out and revealed surprising similarities in terms of anisotropy, strain-rate dependency, stress-softening and hysteresis, with the main difference between the two preservation states being the magnitude of these properties. As formalin fixation is known to notably affect the formation of cross-links between the collagen of biological materials, the differences may reveal the influence of cross-links on the mechanical behaviour of soft tissues.


Assuntos
Esôfago , Projetos de Pesquisa , Humanos , Estresse Mecânico , Esôfago/fisiologia , Anisotropia , Fenômenos Biomecânicos , Resistência à Tração
6.
Chem Pharm Bull (Tokyo) ; 72(4): 374-380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38599850

RESUMO

Tablets are the most commonly used dosage form in the pharmaceutical industry, and their properties such as disintegration, dissolution, and portability are influenced by their strength. However, in industry, the mixing fraction of powders to obtain a tablet compact with sufficient strength is determined based on empirical rules. Therefore, a method for predicting tablet strength based on the properties of a single material is required. The objective of this study was to quantitatively evaluate the relationship between the compression properties and tablet strength of powder mixtures. The compression properties of the powder mixtures with different plasticities were evaluated based on the force-displacement curves obtained from the powder compression tests. Heckel and compression energy analyses were performed to evaluate compression properties. During the compression energy analysis, the ratio of plastic deformation energy to elastic deformation energy (Ep/Ee) was assumed to be the plastic deformability of the powder. The quantitative relationship between the compression properties and tensile strength of the tablets was investigated. Based on the obtained relationship and the compression properties of a single material, a prediction equation was put forward for the compression properties of the powder mixture. Subsequently, a correlation equation for tablet strength was proposed by combining the values of K and Ep/Ee obtained from the Heckel and compression energy analyses, respectively. Finally, by substituting the compression properties of the single material and the mass fraction of the plastic material into the proposed equation, the tablet strength of the powder mixture with different plastic deformabilities was predicted.


Assuntos
Química Farmacêutica , Química Farmacêutica/métodos , Pós , Resistência à Tração , Comprimidos , Pressão , Composição de Medicamentos
7.
J Mech Behav Biomed Mater ; 154: 106520, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569421

RESUMO

The preparation of slender specimens for in-vitro tissue characterisation could potentially alter mechanical tissue properties. To investigate this factor, rectangular specimens were prepared from the wall of the porcine aorta for uniaxial tensile loading. Varying strip widths of 16 mm, 8 mm, and 4 mm were achieved by excising zero, one, and three cuts within the specimen along the loading direction, respectively. While specimens loaded along the vessel's circumferential direction acquired consistent tissue properties, the width of test specimens influenced the results of axially loaded tissue; vascular wall stiffness was reduced by approximately 40% in specimens with strips 4 mm wide. In addition, the cross-loading stretch was strongly influenced by specimen strip width, and fiber sliding contributed to the softening of slender tensile specimens, an outcome from finite element analysis of test specimens. We may, therefore, conclude that cutting orthogonal to the main direction of collagen fibers introduces mechanical trauma that weakens slender tensile specimens, compromising the determination of representative mechanical vessel wall properties.


Assuntos
Aorta , Suínos , Animais , Resistência à Tração , Análise de Elementos Finitos , Estresse Mecânico , Fenômenos Biomecânicos
8.
J Mech Behav Biomed Mater ; 154: 106498, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581962

RESUMO

Chitosan (CS) and phloroglucinol (PhG), two extracts abundantly found in marine life, were investigated for their ability to biomodify demineralized dentin by enhancing collagen crosslinks and improving dentin extracellular matrix (ECM) mechanical and biochemical stability. Dentin obtained from non-carious extracted human molars were demineralized with phosphoric acid. Baseline Fourier-transform infrared (FTIR) spectra, apparent flexural elastic modulus (AE) and dry mass (DM) of each specimen were independently acquired. Specimens were randomly incubated for 5 min into either ultrapure water (no-treatment), 1% glutaraldehyde (GA), 1% CS or 1% PhG. Water and GA were used, respectively, as a negative and positive control for collagen crosslinks. Specimens' post-treatment FTIR spectra, AE, and DM were obtained and compared with correspondent baseline measurements. Additionally, the host-derived proteolytic activity of dentin ECM was assessed using hydroxyproline assay (HYP) and spectrofluorometric analysis of a fluorescent-quenched substrate specific for matrix metalloproteinases (MMPs). Finally, the bond strength of an etch-and-rinse adhesive was evaluated after application of marine compounds as non-rinsing dentin primers. Dentin specimens FTIR spectral profile changed remarkably, and their AE increased significantly after treatment with marine compounds. DM variation, HYP assay and fluorogenic substrate analysis concurrently indicated the biodegradation of CS- and PhG-treated specimens was significantly lesser in comparison with untreated specimens. CS and PhG treatments enhanced biomechanical/biochemical stability of demineralized dentin. These novel results show that PhG is a primer with the capacity to biomodify demineralized dentin, hence rendering it less susceptible to biodegradation by host-proteases.


Assuntos
Quitosana , Colagem Dentária , Humanos , Dentina/química , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Hidroxiprolina , Adesivos Dentinários/química , Água/metabolismo , Resistência à Tração
9.
BMC Oral Health ; 24(1): 423, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580948

RESUMO

BACKGROUND: To evaluate the physical properties of bioactive glass-modified universal multimode adhesive and its micro-tensile bond strength (µTBS) to artificially induced caries-affected dentin. METHODS: All bond universal adhesive was used in the study. Specimens were divided into 2 main groups: control unmodified adhesive and 5 wt% BAG modified adhesive. The degree of conversion, pH, bioactivity, and viscosity of the adhesives were tested with n = 5 for each test. Micro-tensile bond strength evaluation was done in etch & rinse (ER) and selective-etch (SE) modes, where 24 human molar teeth were used (n = 3), 12 teeth for immediate bond strength, and the other 12 were tested after 6 months of storage in simulated body fluid (SBF). RESULTS: No significant difference was found between the control and the 5wt% BAG groups regarding the degree of conversion (61.01 ± 0.43 and 60.44 ± 0.61 respectively) and the viscosity (109.77 ± 22.3 and 124.3 ± 9.92 respectively). The control group revealed significantly lower pH values than the 5wt% BAG group (3.16 ± 0.5 and 4.26 ± 0.09 respectively). Immediate bond strength results revealed that the 5wt% BAG in the ER mode had the highest bond strength followed by the control group in the ER mode (44.16 ± 7.53 and 44.00 ± 7.96 respectively). SE groups showed that the immediate strength of the 5wt% BAG group was higher than the control group (42.09 ± 6.02 and 39.29 ± 6.64 respectively). After 6 months of storage, bond strength results revealed a decrease in bond strength values for the control groups but not for the 5wt% BAG in both application modes. CONCLUSIONS: The incorporation of BAG (5wt%) improved the universal adhesive micro-tensile bond strength and bond durability for both adhesive application modes without affecting its degree of conversion or viscosity.


Assuntos
Colagem Dentária , Cárie Dentária , Humanos , Cimentos Dentários , Adesivos Dentinários/química , Cimentos de Resina/química , Suscetibilidade à Cárie Dentária , Teste de Materiais , Resistência à Tração , Dentina
10.
Med Sci Monit ; 30: e943502, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38515376

RESUMO

BACKGROUND Modification of the glass fiber post (GFP) with titanium dioxide or silver particles can improve the durability and reliability of dental treatments for ensuring long-term success. This research assessed the tensile bond strength (TBS) of an adhesive system used for cementing GFPs into root dentin following the incorporation of nanoparticles of titanium dioxide (NTiO2) and silver (NAg). MATERIAL AND METHODS Sixty human maxillary canines were prepared to create a 10-mm intra-radicular space for post placement from the cementoenamel junction. The specimens were randomly allocated into 2 groups (a non-thermocycling group and a thermocycling group). Each group was divided into 3 subgroups (10 samples each) according to the adhesive system used (adhesive system devoid of any addition, adhesive system including 1% NAg, and adhesive system infused with 1% NTiO2). TBS tests were conducted and recorded in MPa using a Universal Testing Machine, with an axial load applied at a rate of 0.5 mm/min until failure. The TBS for both groups (non-thermocycling and thermocycling) was measured in megapascals (MPa), and the failure type was recorded. The data were statistically analyzed using one-way analysis of variance (ANOVA) and Tukey's test with P.


Assuntos
Adesivos , Colagem Dentária , Vidro , Titânio , Humanos , Cimentos de Resina/química , Resistência à Tração , Reprodutibilidade dos Testes , Prata , Dentina , Teste de Materiais
11.
Science ; 383(6689): 1374-1379, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513010

RESUMO

Cells connect with their environment through surface receptors and use physical tension in receptor-ligand bonds for various cellular processes. Single-molecule techniques have revealed bond strength by measuring "rupture force," but it has long been recognized that rupture force is dependent on loading rate-how quickly force is ramped up. Thus, the physiological loading rate needs to be measured to reveal the mechanical strength of individual bonds in their functional context. We have developed an overstretching tension sensor (OTS) to allow more accurate force measurement in physiological conditions with single-molecule detection sensitivity even in mechanically active regions. We used serially connected OTSs to show that the integrin loading rate ranged from 0.5 to 4 piconewtons per second and was about three times higher in leukocytes than in epithelial cells.


Assuntos
Técnicas Biossensoriais , Adesão Celular , Integrinas , Mecanotransdução Celular , Adesão Celular/fisiologia , Integrinas/química , Integrinas/metabolismo , Imagem Individual de Molécula , Humanos , Linhagem Celular Tumoral , Resistência à Tração , Sondas de Oligonucleotídeos , Hibridização de Ácido Nucleico
12.
Int J Biol Macromol ; 265(Pt 2): 130892, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513904

RESUMO

This study investigates the potential of Juncus plant fibers as a renewable source for producing cellulose nanocrystals (CNs) to reinforce polymers. Cellulose microfibers (CMFs) were extracted with a 0.43 ± 0.2 µm diameter and 69 % crystallinity through alkaline and bleaching treatments, then subjected to sulfuric acid hydrolysis, yielding four CN types (CN10, CN15, CN20 and CN30) with distinct physico-chemical properties and aspect ratios (47, 55, 57, and 60). The study assessed the influence of cellulose nanocrystals (CNs), incorporated at different weight percentages (3 %, 5 %, and 8 %), on thermal, transparency, and mechanical properties in k-carrageenan (CA) biocomposite films. The results indicate significant enhancements in these characteristics, highlighting good compatibility between CNs and CA matrix. Particularly noteworthy is the observed substantial improvement in tensile strength at an 8 wt% loading, with values of 23.43 ± 0.83 MPa for neat CA, 33.53 ± 0.83 MPa for CA-CN10, 36.67 ± 0.71 MPa for CA-CN15, 37.65 ± 0.56 MPa for CA-CN20, and 39.89 ± 0.77 MPa for CA-CN30 composites. Furthermore, the research explores the connection between the duration of hydrolysis and the properties of cellulose nanocrystals (CNs), unveiling their influence on the characteristics of nanocomposite films. Prolonged hydrolysis enhances CN crystallinity (CrI), aspect ratio, and surface charge content, consequently enhancing mechanical features like strength and flexibility in these films. These findings demonstrate the potential of Juncus plant fibers as a natural and eco-friendly resource for producing CNs that effectively reinforce polymers, making them an attractive option for diverse applications in the field.


Assuntos
Nanocompostos , Nanopartículas , Celulose/química , Carragenina/química , Nanopartículas/química , Nanocompostos/química , Resistência à Tração
13.
Int J Biol Macromol ; 265(Pt 2): 130520, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553390

RESUMO

Starch-derived films exhibit significant potential for packaging applications owing to their low cost, biodegradable characteristics, and natural abundance. Nonetheless, there is a demand to enhance their mechanical properties and moisture resistance to broaden their use. In this study, high performing sorbitol-plasticized starch/Ti3C2Tx MXene nanocomposites, reinforced with ultra-low filler contents, were fabricated for the first time in literature. The MXene nanoplatelets were well-dispersed within the starch matrix while there was a tendency for the fillers to align in-plane, as revealed by polarized Raman spectroscopy. The produced nanocomposite films demonstrate remarkable effectiveness in blocking UV light, offering an additional valuable attribute in food packaging. The Young's modulus and tensile strength of starch films containing 0.75 wt% MXene increased from 439.9 and 11.0 MPa to 764.3 and 20.8 MPa, respectively. The introduction of 1 wt% MXene nanoplatelets reduced the water vapour permeability of starch films from 2.78 × 10-7 to 1.80 × 10-7 g/m h Pa due to the creation of highly tortuous paths for water molecules. Micromechanical theories were also implemented to understand further the reinforcing mechanisms in the biobased nanocomposites. The produced starch nanocomposites not only capitalize on the biodegradable and renewable nature of starch but also harness the unique properties of nanomaterials, paving the way for sustainable and high-performance packaging solutions that align with both consumer and environmental demands.


Assuntos
Nanocompostos , Nitritos , Amido , Elementos de Transição , Amido/química , Titânio/química , Nanocompostos/química , Resistência à Tração , Embalagem de Alimentos/métodos
14.
Int J Biol Macromol ; 265(Pt 2): 130904, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553392

RESUMO

This study aims to enhance the functionality of conventional protein-based nanocellulose composite films (PNCF) to meet the high demand for natural antimicrobial packaging films. Capsicum leaf protein (CLP) and cellulose nanocrystals (CNCs) extracted from capsicum leaves were used as raw materials. Capsaicin, an essential antibacterial active ingredient in the capsicum plant, was used as an additive. The influence of different capsaicin loads on PNCF physicochemical and material properties was investigated under alkaline conditions. The results show that all film-forming liquids (FFLs) are non-Newtonian fluids with shear thinning behavior. When the capsaicin loading exceeds 20 %, the surface microstructure of PNCF changes from dense lamellar to rod-like. Capsaicin did not alter the PNCF crystal structure, thermal stability or chemical bonding. Capsaicin can be loaded onto the PNCF surface by intermolecular hydrogen bonding reactions with CLP and CNC, preserving capsaicin's biological activity. With increasing capsaicin loads from 0 % to 50 %, the mechanical and hydrophobic properties of PNCF decreased, whereas the diameter of the inhibition zone increased. All PNCFs have UV-blocking properties with potential applications in developing biodegradable food packaging materials. The results of this study provide a theoretical basis for the high-value utilization of capsicum cultivation waste and the preparation of novel PNCF.


Assuntos
Capsicum , Nanopartículas , Capsicum/química , Capsaicina/farmacologia , Resistência à Tração , Celulose/química , Nanopartículas/química , Cânfora , Mentol , Verduras , Folhas de Planta/metabolismo
15.
Int J Biol Macromol ; 265(Pt 2): 130569, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553394

RESUMO

The development of equipped bio-based epoxy materials has been gaining much attention recently. Nevertheless, finding the balance between the structure and properties of materials remains a significant challenge. In this work, cellulose-based epoxy (PHPCEP) with "soft" and "hard" cooperative structures was designed and demonstrated to endow bisphenol A diglycidyl ether (BADGE) with excellent toughness, heat resistance, mechanical strength, glass transition temperature, thermal stability, and solvent resistance. When 5 wt% PHPCEP was incorporated into BADGE composites, the resulting materials exhibited the maximum flexural strength (121.9 MPa) and tensile strength (71.4 MPa), a high glass transition temperature (148.3 °C), and 10 wt% PHPCEP/BADGE demonstrated the highest impact strength (70.5 kJ/m2). These figures are 18.8 %, 16.1 %, 21.5 %, and 254.3 % higher than the corresponding values of neat BADGE. The results of dynamic mechanical properties and heat degradation of the cured specimens also suggest that PHPCEP/BADGE materials have superior stiffness and toughness than neat BADGE, which could be attributed to the strong interaction between PHPCEP and BADGE, delivering better thermal stability for the composites compared to the pristine resin. Considering the remarkable effect, this work provides an effective way of highly efficient utilization of abundant cellulose and a high-performance additive for composite materials.


Assuntos
Celulose , Compostos de Epóxi , Celulose/química , Resistência à Tração , Compostos de Epóxi/química , Compostos Benzidrílicos , Resinas Vegetais
16.
Arch Oral Biol ; 162: 105942, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38452415

RESUMO

OBJECTIVES: The aim of this scoping review was to evaluate the available scientific evidence regarding the use of flavonoids in the treatment of caries-affected dentin focusing on bonding to dentin. METHODS: A comprehensive literature search was performed in five databases from March 2022 and updated in April 2023: PubMed, EMBASE, Scopus, Web of Science, and Scielo. Additionally, the references of included studies were manually searched. Gray literature was excluded from the review. STUDY SELECTION: Inclusion criteria included in vitro, in situ, and in vivo studies (animal or human) published in English. Abstracts, reviews, case reports, book chapters, doctoral dissertations, guidelines, and studies using pure plant extracts were excluded. Data collected from the selected studies were summarized and subjected to narrative and descriptive analysis. Out of the 91 studies identified, only 16 studies met the inclusion criteria. RESULTS: The review analyzed eight different flavonoids (hesperidin, galardin, proanthocyanidin, genipin, quercetin, naringin, epigallocatechin-3-gallate, and other catechins subtypes) used as pretreatment or loaded into adhesive systems, primers, and phosphoric acid. The use of flavonoids improved the mechanical properties of the materials and modified the biological properties of the dentin, reducing collagen loss by the inhibition of proteolytic activity of matrix metalloproteinases (MMPs). CONCLUSIONS: Based on the findings of this scoping review, it can be concluded that the use of flavonoids as pretreatment or incorporation into dental materials preserves collagen in the hybrid layer, inhibiting the MMPs activities, modifying the collagen fibrils of the dentin matrix and improving the mechanical properties of the dental adhesive systems. Therefore, it represents a promising approach for promoting dentin biomodification. This can result in more stable bonding of adhesive restorations to caries-affected dentin.


Assuntos
Colagem Dentária , Cárie Dentária , Humanos , Flavonoides/farmacologia , Suscetibilidade à Cárie Dentária , Colágeno , Cárie Dentária/tratamento farmacológico , Metaloproteinases da Matriz , Dentina , Adesivos Dentinários , Teste de Materiais , Cimentos de Resina , Resistência à Tração
17.
Dent Mater J ; 43(2): 303-311, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38447979

RESUMO

This study evaluated the bonding performance of coronal dentin disks, designed for biological restoration, and CAD/CAM resin composite disks when bonded to flat dentin surfaces using dual-cure resin cements, with and without a resin-coating (RC) technique. Three distinct groups were established within the non-RC group, each using one of the two types of resin cements in a self-adhesive mode: one-step self-etch adhesive (1-SEA) without light-cure, 1-SEA with light-cure, and a separate group using an alternate cement. Within the RC group, a subgroup was established for each cement. The microtensile bond strength (µTBS) of the disk-dentin beam was tested after 0 and 10,000 thermocycles in a 5°C/55°C. No significant µTBS difference was observed among the non-RC groups. However, when using RC, the µTBSs of coronal dentin disks significantly exceeded those of CAD/CAM resin composite disks. Thermocycle aging did not affect µTBS in any of the bonding methods, except in self-adhesive mode.


Assuntos
Colagem Dentária , Cimentos de Resina , Cimentos de Resina/química , Cimentos Dentários , Colagem Dentária/métodos , Resistência à Tração , Teste de Materiais , Resinas Compostas/química , Adesivos Dentinários/química , Cimentos de Ionômeros de Vidro , Dentina
18.
Sci Rep ; 14(1): 6315, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491076

RESUMO

The aim was to investigate the influence of endodontic irrigation solutions and protocols on the micro-tensile bond strength (µTBS) to dentin using an etch-and-rinse (ER) or self-etch (SE) adhesive approach. Eighty extracted human molars were ground to dentin. After pretreating for 27 min (21 min-3 min-3 min) with five different endodontic irrigation protocols (Group 1: NaOCl-EDTA-NaOCl; Group 2: NaOCl-NaOCl-EDTA; Group 3: NaOCl-NaCl-NaOCl; Group 4: Dual Rinse-Dual Rinse-Dual Rinse; Group 5: NaCl-NaCl-NaCl), an ER (Optibond FL, Kerr) or a SE (Clearfil SE Bond, Kuraray) adhesive system was applied. After light-curing, composite build-ups were made and cut into dentin-composite sticks. µTBS and failure modes were analyzed. Nonparametric statistical analyses (α = 0.05) were performed for comparison of the five groups within each type of adhesive as well as between the two adhesive systems used. The use of an ER instead of a SE adhesive system resulted in significantly higher µTBS for all irrigation protocols except for group 1 (NaOCl-EDTA-NaOCl) and 2 (NaOCl-NaOCl-EDTA). A statistical difference between the five different endodontic irrigation protocols was only found within the SE adhesive group, where group 1 (NaOCl-EDTA-NaOCl) achieved highest values. The use of an ER adhesive system cancels out the effect of the endodontic irrigation solution. The highest µTBS was achieved when using a NaOCl-EDTA-NaOCl-irrigation protocol in combination with Clearfil SE Bond, which shows that the selection of the endodontic irrigation should match the corresponding SE adhesive system.


Assuntos
Cloreto de Sódio , Hipoclorito de Sódio , Humanos , Ácido Edético/farmacologia , Ácido Edético/química , Hipoclorito de Sódio/farmacologia , Hipoclorito de Sódio/química , Cloreto de Sódio/farmacologia , Dentina/química , Adesivos Dentinários/química , Teste de Materiais , Resistência à Tração
19.
Clin Oral Investig ; 28(3): 202, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453707

RESUMO

OBJECTIVES: To evaluate the effects of Nd:YAG laser irradiation on the microstructures of dentin surfaces and the long-term bond strength of dentin under simulated pulpal pressure. MATERIALS AND METHODS: Under simulated pulp pressure, 30 freshly extracted caries-free third molars were cut into 2-mm-thick dentin samples and then divided into five groups: the control and laser groups (93.3 J/cm2; 124.4 J/cm2; 155.5 J/cm2; 186.6 J/cm2). Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and Vickers hardness were used to analyze the surface morphology, composition, and mechanical properties of the dentin before and after laser irradiation. Another 80 caries-free third molars were removed and treated as described above, and the resin was bonded to the dentin surface with Single Bond Universal (SBU) adhesive in self-etch mode to make stick specimens. Microtensile bond strength (µTBS), confocal laser scanning microscopy (CLSM), and interfacial silver nanoleakage tests before and after 10,000 times thermocycling were then performed to analyze the bonding properties and interfacial durability of each group. RESULTS: SEM observations revealed that the surfaces of all laser group specimens were rough with open dentin tubules. Laser irradiation altered the surface composition of dentin while removing some collagen fibers but did not affect its surface hardness or crystallographic characteristics. Furthermore, laser irradiation with an energy density of 124.4 J/cm2 significantly promoted the immediate and aging bond strengths and reduced nanoleakage compared to those of the control group. CONCLUSIONS: Under simulated pulp pressure, Nd:YAG laser pretreatment altered the chemical composition of dentin and improved the immediate and long-term bond strength. CLINICAL RELEVANCE: This study investigated the optimal parameters for Nd:YAG laser pretreatment of dentin, which has potential as a clinical method to strengthen bonding.


Assuntos
Colagem Dentária , Cárie Dentária , Lasers de Estado Sólido , Humanos , Dentina/efeitos da radiação , Lasers de Estado Sólido/uso terapêutico , Cimentos Dentários , Polpa Dentária , Microscopia Eletrônica de Varredura , Resistência à Tração , Adesivos Dentinários/química , Cimentos de Resina/química
20.
J Dent ; 143: 104905, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428716

RESUMO

OBJECTIVE: To prepare a bioactive dentin adhesive and investigate its effect on promoting bonding durability of dentin. METHODS: The mineralization of the bioactive glass with high phosphorus (10.8 mol% P2O5-54.2 mol% SiO2-35 mol% CaO, named PSC) and its ability to induce type I collagen mineralization were observed by SEM and TEM. The Control-Bond and the bioactive dentin adhesive containing 20 wt% PSC particles (PSC-Bond) were prepared, and their degree of conversion (DC), microtensile bond strength (µTBS), film thickness and mineralization performance were evaluated. To evaluate the bonding durability, dentin bonding samples were prepared by Control-Bond and PSC-Bond, and mineralizated in simulated body fluid for 24 h, 3 months, and 6 months. Then, the long-term bond strength and microleakage at the adhesive interface of dentin bonding samples were evaluated by microtensile testing and semiquantitative ELIASA respectively. RESULTS: The PSC showed superior mineralization at 24 h and induced type I collagen mineralization to some extent under weakly alkaline conditions. For PSC-Bond, DC was 62.65 ± 1.20%, µTBS was 39.25 ± 4.24 MPa and film thickness was 17.00 ± 2.61 µm. PSC-Bond also formed hydroxyapatite and maintained good mineralization at the bonding interface. At 24 h, no significant differences in µTBS and interface microleakage were observed between the Control-Bond and PSC-Bond groups. After 6 months of aging, the µTBS was significantly higher and the interface microleakage was significantly lower of PSC-Bond group than those of Control-Bond group. SIGNIFICANCE: PSC-Bond maintained bond strength stability and reduced interface microleakage to some extent, possibly reducing the occurrence of secondary caries, while maintaining long-term effectiveness of adhesive restorations.


Assuntos
Colagem Dentária , Cimentos Dentários , Cimentos Dentários/química , Adesivos Dentinários/química , Cimentos de Resina/química , Colágeno Tipo I , Dióxido de Silício/farmacologia , Dentina , Resistência à Tração , Teste de Materiais , Resinas Compostas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...